Copied to
clipboard

G = C43.7C2order 128 = 27

7th non-split extension by C43 of C2 acting faithfully

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C43.7C2, C42.44Q8, C42.307D4, C4⋊C811C4, C41(C8⋊C4), C4.42(C4×Q8), C4.166(C4×D4), (C2×C4).47C42, (C2×C42).35C4, C42.264(C2×C4), (C2×C4).76M4(2), C2.12(C4×M4(2)), C22.53(C2×C42), C2.2(C4⋊M4(2)), C2.3(C42.6C4), (C22×C8).383C22, (C2×C42).993C22, C23.257(C22×C4), C22.41(C2×M4(2)), (C22×C4).1610C23, C22.52(C42⋊C2), C22.7C42.40C2, C2.7(C4×C4⋊C4), (C2×C4⋊C8).51C2, C2.9(C2×C8⋊C4), (C2×C4).78(C4⋊C4), (C2×C8).135(C2×C4), C22.56(C2×C4⋊C4), (C2×C4).330(C2×Q8), (C2×C8⋊C4).24C2, (C2×C4).1502(C2×D4), (C2×C4).920(C4○D4), (C2×C4).600(C22×C4), (C22×C4).439(C2×C4), SmallGroup(128,499)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C43.7C2
C1C2C4C2×C4C22×C4C2×C42C2×C8⋊C4 — C43.7C2
C1C22 — C43.7C2
C1C22×C4 — C43.7C2
C1C2C2C22×C4 — C43.7C2

Generators and relations for C43.7C2
 G = < a,b,c,d | a4=b4=c4=1, d2=c, ab=ba, ac=ca, dad-1=a-1b2, bc=cb, dbd-1=bc2, cd=dc >

Subgroups: 196 in 146 conjugacy classes, 96 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C42, C2×C8, C2×C8, C22×C4, C22×C4, C8⋊C4, C4⋊C8, C2×C42, C2×C42, C22×C8, C22.7C42, C43, C2×C8⋊C4, C2×C4⋊C8, C43.7C2
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C4⋊C4, M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C8⋊C4, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C2×M4(2), C4×C4⋊C4, C2×C8⋊C4, C4×M4(2), C4⋊M4(2), C42.6C4, C43.7C2

Smallest permutation representation of C43.7C2
Regular action on 128 points
Generators in S128
(1 87 55 105)(2 120 56 90)(3 81 49 107)(4 114 50 92)(5 83 51 109)(6 116 52 94)(7 85 53 111)(8 118 54 96)(9 36 80 101)(10 121 73 71)(11 38 74 103)(12 123 75 65)(13 40 76 97)(14 125 77 67)(15 34 78 99)(16 127 79 69)(17 119 31 89)(18 88 32 106)(19 113 25 91)(20 82 26 108)(21 115 27 93)(22 84 28 110)(23 117 29 95)(24 86 30 112)(33 61 98 45)(35 63 100 47)(37 57 102 41)(39 59 104 43)(42 122 58 72)(44 124 60 66)(46 126 62 68)(48 128 64 70)
(1 79 31 47)(2 76 32 44)(3 73 25 41)(4 78 26 46)(5 75 27 43)(6 80 28 48)(7 77 29 45)(8 74 30 42)(9 22 64 52)(10 19 57 49)(11 24 58 54)(12 21 59 51)(13 18 60 56)(14 23 61 53)(15 20 62 50)(16 17 63 55)(33 85 67 95)(34 82 68 92)(35 87 69 89)(36 84 70 94)(37 81 71 91)(38 86 72 96)(39 83 65 93)(40 88 66 90)(97 106 124 120)(98 111 125 117)(99 108 126 114)(100 105 127 119)(101 110 128 116)(102 107 121 113)(103 112 122 118)(104 109 123 115)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 75 77 79)(74 76 78 80)(81 83 85 87)(82 84 86 88)(89 91 93 95)(90 92 94 96)(97 99 101 103)(98 100 102 104)(105 107 109 111)(106 108 110 112)(113 115 117 119)(114 116 118 120)(121 123 125 127)(122 124 126 128)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,87,55,105)(2,120,56,90)(3,81,49,107)(4,114,50,92)(5,83,51,109)(6,116,52,94)(7,85,53,111)(8,118,54,96)(9,36,80,101)(10,121,73,71)(11,38,74,103)(12,123,75,65)(13,40,76,97)(14,125,77,67)(15,34,78,99)(16,127,79,69)(17,119,31,89)(18,88,32,106)(19,113,25,91)(20,82,26,108)(21,115,27,93)(22,84,28,110)(23,117,29,95)(24,86,30,112)(33,61,98,45)(35,63,100,47)(37,57,102,41)(39,59,104,43)(42,122,58,72)(44,124,60,66)(46,126,62,68)(48,128,64,70), (1,79,31,47)(2,76,32,44)(3,73,25,41)(4,78,26,46)(5,75,27,43)(6,80,28,48)(7,77,29,45)(8,74,30,42)(9,22,64,52)(10,19,57,49)(11,24,58,54)(12,21,59,51)(13,18,60,56)(14,23,61,53)(15,20,62,50)(16,17,63,55)(33,85,67,95)(34,82,68,92)(35,87,69,89)(36,84,70,94)(37,81,71,91)(38,86,72,96)(39,83,65,93)(40,88,66,90)(97,106,124,120)(98,111,125,117)(99,108,126,114)(100,105,127,119)(101,110,128,116)(102,107,121,113)(103,112,122,118)(104,109,123,115), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120)(121,123,125,127)(122,124,126,128), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)>;

G:=Group( (1,87,55,105)(2,120,56,90)(3,81,49,107)(4,114,50,92)(5,83,51,109)(6,116,52,94)(7,85,53,111)(8,118,54,96)(9,36,80,101)(10,121,73,71)(11,38,74,103)(12,123,75,65)(13,40,76,97)(14,125,77,67)(15,34,78,99)(16,127,79,69)(17,119,31,89)(18,88,32,106)(19,113,25,91)(20,82,26,108)(21,115,27,93)(22,84,28,110)(23,117,29,95)(24,86,30,112)(33,61,98,45)(35,63,100,47)(37,57,102,41)(39,59,104,43)(42,122,58,72)(44,124,60,66)(46,126,62,68)(48,128,64,70), (1,79,31,47)(2,76,32,44)(3,73,25,41)(4,78,26,46)(5,75,27,43)(6,80,28,48)(7,77,29,45)(8,74,30,42)(9,22,64,52)(10,19,57,49)(11,24,58,54)(12,21,59,51)(13,18,60,56)(14,23,61,53)(15,20,62,50)(16,17,63,55)(33,85,67,95)(34,82,68,92)(35,87,69,89)(36,84,70,94)(37,81,71,91)(38,86,72,96)(39,83,65,93)(40,88,66,90)(97,106,124,120)(98,111,125,117)(99,108,126,114)(100,105,127,119)(101,110,128,116)(102,107,121,113)(103,112,122,118)(104,109,123,115), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,91,93,95)(90,92,94,96)(97,99,101,103)(98,100,102,104)(105,107,109,111)(106,108,110,112)(113,115,117,119)(114,116,118,120)(121,123,125,127)(122,124,126,128), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,87,55,105),(2,120,56,90),(3,81,49,107),(4,114,50,92),(5,83,51,109),(6,116,52,94),(7,85,53,111),(8,118,54,96),(9,36,80,101),(10,121,73,71),(11,38,74,103),(12,123,75,65),(13,40,76,97),(14,125,77,67),(15,34,78,99),(16,127,79,69),(17,119,31,89),(18,88,32,106),(19,113,25,91),(20,82,26,108),(21,115,27,93),(22,84,28,110),(23,117,29,95),(24,86,30,112),(33,61,98,45),(35,63,100,47),(37,57,102,41),(39,59,104,43),(42,122,58,72),(44,124,60,66),(46,126,62,68),(48,128,64,70)], [(1,79,31,47),(2,76,32,44),(3,73,25,41),(4,78,26,46),(5,75,27,43),(6,80,28,48),(7,77,29,45),(8,74,30,42),(9,22,64,52),(10,19,57,49),(11,24,58,54),(12,21,59,51),(13,18,60,56),(14,23,61,53),(15,20,62,50),(16,17,63,55),(33,85,67,95),(34,82,68,92),(35,87,69,89),(36,84,70,94),(37,81,71,91),(38,86,72,96),(39,83,65,93),(40,88,66,90),(97,106,124,120),(98,111,125,117),(99,108,126,114),(100,105,127,119),(101,110,128,116),(102,107,121,113),(103,112,122,118),(104,109,123,115)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,75,77,79),(74,76,78,80),(81,83,85,87),(82,84,86,88),(89,91,93,95),(90,92,94,96),(97,99,101,103),(98,100,102,104),(105,107,109,111),(106,108,110,112),(113,115,117,119),(114,116,118,120),(121,123,125,127),(122,124,126,128)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)]])

56 conjugacy classes

class 1 2A···2G4A···4H4I···4AF8A···8P
order12···24···44···48···8
size11···11···12···24···4

56 irreducible representations

dim11111112222
type++++++-
imageC1C2C2C2C2C4C4D4Q8M4(2)C4○D4
kernelC43.7C2C22.7C42C43C2×C8⋊C4C2×C4⋊C8C4⋊C8C2×C42C42C42C2×C4C2×C4
# reps1212216822164

Matrix representation of C43.7C2 in GL5(𝔽17)

130000
04000
00400
000013
00040
,
40000
011500
011600
00001
000160
,
160000
04000
00400
000130
000013
,
40000
00500
011000
000315
0001514

G:=sub<GL(5,GF(17))| [13,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,13,0],[4,0,0,0,0,0,1,1,0,0,0,15,16,0,0,0,0,0,0,16,0,0,0,1,0],[16,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,13,0,0,0,0,0,13],[4,0,0,0,0,0,0,11,0,0,0,5,0,0,0,0,0,0,3,15,0,0,0,15,14] >;

C43.7C2 in GAP, Magma, Sage, TeX

C_4^3._7C_2
% in TeX

G:=Group("C4^3.7C2");
// GroupNames label

G:=SmallGroup(128,499);
// by ID

G=gap.SmallGroup(128,499);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,723,142,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,b*c=c*b,d*b*d^-1=b*c^2,c*d=d*c>;
// generators/relations

׿
×
𝔽